Skip to content

Datasets

dataset_slice

dataset_slice(dataset, start, end)

Return a shallow slice of a FeatureDataset.

Parameters:

Name Type Description Default
dataset FeatureDataset

Dataset to slice.

required
start int

Starting index (inclusive).

required
end int

Ending index (exclusive).

required

Returns:

Type Description
FeatureDataset

Shallow slice of the dataset.

summarize_predictions_chunked

summarize_predictions_chunked(
    model_apply,
    model_params,
    features,
    param_names,
    *,
    chunk_size,
    param_shapes,
)

Compute prediction mean without materializing the full tensor.

Parameters:

Name Type Description Default
model_apply Callable

Model apply function.

required
model_params object

Model parameters.

required
features ndarray

Feature matrix used for inference.

required
param_names Sequence[str]

Parameter names corresponding to predicted vector entries.

required
chunk_size int

Batch size for chunked processing.

required
param_shapes Mapping[str, Sequence[int]]

Target shapes keyed by parameter name.

required

Returns:

Type Description
Dict[str, object]

Mean prediction mapped into structured Python scalars/arrays.

Raises:

Type Description
ValueError

If features is empty.

truncate_dataset_timesteps

truncate_dataset_timesteps(dataset, max_timesteps)

Trim controls/targets to the provided horizon (no-op if already shorter).

Parameters:

Name Type Description Default
dataset FeatureDataset

Dataset to truncate.

required
max_timesteps int

Maximum number of timesteps to retain.

required

Returns:

Type Description
FeatureDataset

Dataset with controls/targets truncated to max_timesteps.

Raises:

Type Description
ValueError

If max_timesteps is not positive.