Datasets¶
dataset_slice ¶
dataset_slice(dataset, start, end)
Return a shallow slice of a FeatureDataset.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
dataset
|
FeatureDataset
|
Dataset to slice. |
required |
start
|
int
|
Starting index (inclusive). |
required |
end
|
int
|
Ending index (exclusive). |
required |
Returns:
| Type | Description |
|---|---|
FeatureDataset
|
Shallow slice of the dataset. |
summarize_predictions_chunked ¶
summarize_predictions_chunked(
model_apply,
model_params,
features,
param_names,
*,
chunk_size,
param_shapes,
)
Compute prediction mean without materializing the full tensor.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model_apply
|
Callable
|
Model apply function. |
required |
model_params
|
object
|
Model parameters. |
required |
features
|
ndarray
|
Feature matrix used for inference. |
required |
param_names
|
Sequence[str]
|
Parameter names corresponding to predicted vector entries. |
required |
chunk_size
|
int
|
Batch size for chunked processing. |
required |
param_shapes
|
Mapping[str, Sequence[int]]
|
Target shapes keyed by parameter name. |
required |
Returns:
| Type | Description |
|---|---|
Dict[str, object]
|
Mean prediction mapped into structured Python scalars/arrays. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If |
truncate_dataset_timesteps ¶
truncate_dataset_timesteps(dataset, max_timesteps)
Trim controls/targets to the provided horizon (no-op if already shorter).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
dataset
|
FeatureDataset
|
Dataset to truncate. |
required |
max_timesteps
|
int
|
Maximum number of timesteps to retain. |
required |
Returns:
| Type | Description |
|---|---|
FeatureDataset
|
Dataset with controls/targets truncated to |
Raises:
| Type | Description |
|---|---|
ValueError
|
If |